SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI (A.A. 03-04) – 2 APRILE 2004

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio username e password.
- 2) I file prodotti devono essere collocati in un **sottodirettorio** della propria **HOME** directory che deve essere creato e avere nome **ESAME2Apr-1-1**. FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.
- 3) Il tempo a disposizione per la prova è di **120 MINUTI** per lo svolgimento di tutto il compito e di **75 minuti** per lo svolgimento della sola parte C.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere tre parametri: il primo deve essere il **nome assoluto di un direttorio** che identifica una gerarchia (**G**) all'interno del file system; il secondo parametro deve essere un numero **M** minore di 6; mentre il terzo parametro deve essere considerato un singolo carattere **C**. Il programma deve cercare nella gerarchia **G** specificata tutti i direttori che contengono un numero di file esattamente uguale a 6 aventi al loro interno almeno una occorrenza del carattere **C**. Si riporti il nome assoluto di tali direttori sullo standard output. In ogni direttorio trovato, si deve invocare la parte in **C**, passando come parametri i **nomi dei primi M file trovati e il carattere C**.

La <u>parte in C</u> accetta un numero variabile di parametri che rappresentano **M** nomi di file **F1..FM** e un carattere **C**. Il processo padre deve generare **M processi figli** (**P0** ... **PM-1**): ogni processo figlio è associato ad uno dei file **Fj**. Ognuno di tali processi figli esegue concorrentemente, legge e calcola il numero di occorrenze **Occj** del carattere **C** nel file associato. Ogni figlio Pj deve comunicare una informazione al figlio seguente Pj+1, a parte l'ultimo figlio che la comunica al padre: l'informazione da comunicare è costituita da un PID e un numero Occ. In particolare il primo processo figlio **P0** dopo aver calcolato il numero di occorrenze **Occ0** nel proprio file, comunica il proprio PID e Occ0 al processo P1; il processo **P1**, dopo aver calcolato **Occ1**, riceve da P0 l'informazione comunicata e passa al processo P2 il proprio PID e Occ1 se il valore di Occ ricevuto è maggiore di quello calcolato oppure l'informazione ricevuta da P0 e così via fino a che l'ultimo processo **PM-1**, dopo aver calcolato **OccM-1**, riceve da PM-2 l'informazione comunicata e passa al processo **padre** il proprio PID e OccM-1 se il valore di Occ ricevuto è maggiore di quello calcolato oppure l'informazione ricevuta da PM-2. Il padre ha il compito di stampare su standard output l'informazione ricevuta dal processo PM-1.

Al termine, ogni processo figlio Pj deve ritornare al padre il proprio Occj e il padre deve stampare su standard output i PID e i valori ritornati dai figli.